Reg.No.:							

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 6018

M.E. / M.Tech. DEGREE END-SEMESTER EXAMINATIONS – JUNE / JULY 2024

Second Semester

Information Technology

P23IT207 – PARALLEL COMPUTING

(Common to Computer Science and Engineering)

(Regulation 2023)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

	K1 – Remembering	K3 – Applying	K5 - Evaluating		
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating		

PART - A

0.11		(10×2)	= 20 N	Aarks)
Q.No.	Questions	Marks	KL	CO
1.	Why do we need Parallel Computing?	2	K2	CO1
2.	Differentiate between Parallel, Concurrent, and Distributed Computing.	2	K2	CO1
3.	What does it mean for a design to "scale"? Give an example.	2	K3	CO2
4.	What are the performance metrics of Parallel Computing?	2	K2	CO2
5.	Differentiate between SIMD and MIMD.	2	K2	CO3
6.	Explain Multithreaded Latency Hiding.	2	K2	CO3
7.	What is Amdahl's Law?	2	K2	CO4
8.	Differentiate between software multithreading and hardware multithreading.	2	K3	CO4
9.	What is Instruction pipelining? What's the main difference between dynamic and static pipelines?	2	K3	CO5
10.	What do you understand about 'Cache' in microprocessor architecture?	2	K2	CO5

PART - B

				$(5 \times 13 = 65 \text{ Marks})$		
Q.No.			Questions	Marks	KL	CO
11.	a)	i.	Distinguish between hardware and software	6	К3	CO1
		ii.	parallelism. Explain the challenges in Parallel Programming.	7		
			(OR)			
	b)	i.	List and explain the system attributes affecting the performance of a CPU.	7	K2	CO1
		ii.	What are architectural methods to improve the speed of computers?	6		
12.	a)		s the PRAM model, and explain the subclasses of the model in detail.	13	K2	CO2
			(OR)			
	b)	Discus i. ii.	s the following in detail: Overhead and Occupancy in Parallel Computing. Parallel Reduction Algorithm.	6 7	К3	CO2
13.	a)	i. ii.	What do you understand by Latency Tolerance? Explain four latency tolerance approaches. (OR)	3 10	K2	CO3
	b)	Discus	ss the following in detail:			
	U)	i.	Microprocessor Architecture Families.	7	K2	CO3
		ii.	Non-linear pipeline processors.	6		
14.	a)	i.	Explain the classification of interconnection networks for parallel processors.	5	K2	CO4
		ii.	Discuss the Network Topologies in interconnected networks.	8		
			(OR)			
	b)		in what is a thread and discuss how to maintain the ronization of concurrent threads with suitable examples.	13	К3	CO4
15.	a)		in in detail the classification of computing systems ling to Flynn's taxonomy. (OR)	13	К3	CO5

b)	i.	Explain why Communication Cost is a major	6	K3	CO5
		overhead in Parallel Computing.			
	ii.	Explain an example with a Simplified Cost Model for	7		
		Communicating Messages.			

PART – C

		(1 x 15	= 15 N	(Iarks
Q.No.	Questions	Marks	KL	CO
16. a)	Explain in detail the Cache Coherence in Multiprocessor	15	K2	CO3
	Systems with proper examples.			
	(OR)			
b)	Discuss the evolution of the different generations of computers.	8	K2	CO1
	Also, explain the elements of modern computer architecture.	7		